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Abstract 

The adaptation of unsupervised learning techniques to speech 

recognition have enabled the training of accurate models with 

less labelled training data, by finetuning a supervised classifier 

on top of a network pretrained using self-supervised methods. 

In this paper, we investigate if continuing the fine-tuning of 

such a model is suitable as a method of speaker adaptation for 

a single speaker, considering two kinds of user: the casual user, 

with data measurable in minutes, and the professional user, 

with data measurable in hours. We conduct experiments across 

a range of dataset sizes, in an attempt to provide a basis for 

estimates on how much data would be needed. 

Introduction 

Modern speech recognition has benefitted from advances 

in deep learning, to the extent that it is now ubiquitous, 

powering phones, computers, and a range of appliances 

from smart televisions to smart speakers. 

This has been enabled by initiatives to increase the 

availability of data, from Librivox, a platform for user-

created audiobooks which has been used as a source for 

several speech corpora, such as Librispeech (Panayotov 

et al., 2015) and Libri-Light (Kahn et al., 2020), to Com-

mon Voice (Ardila et al., 2020), which collects data spe-

cifically for speech recognition, in a range of languages. 

Despite impressive advances in the accuracy of 

speech recognition systems in recent years, the fact that 

a system achieves a certain level of accuracy on a test set 

is of little interest to an individual user whose own results 

are poor, and even in speech recognition systems using 

newer methods, performance tends to decrease on an un-

seen speaker (Meng et al., 2019). 

Applications in which speech recognition is a com-

ponent, such as digital assistants like Siri or Alexa, can 

typically have a level of robustness to the accuracy of 

speech recognition, either through task-specific, limited 

vocabulary and grammar, or by directly modelling er-

rors. Tasks which involve dictation, on the other hand, 

because of the freer nature of their input, tend not to have 

a level of correction beyond that which can be provided 

by a language model, which, despite recent advances, 

tend to perform less well when there is a higher degree 

of novelty in their input. 

With speaker adaptation, speech recognition can 

achieve good enough results for dictation: the British au-

thor Terry Pratchett notably made use of speech recogni-

tion to write his final books after early-onset Alzheimer’s 

left him unable to type (Flood, 2011), while respeakers 

for subtitles of live programming are used throughout 

Europe (Romero-Fresco, 2018). 

In this work, we attempt determine if continued fine 

tuning of a publicly available model is viable as a single 

speaker adaptation method, considering two in-domain 

cases: the low resource case of a casual user, who may 

only have minutes of transcribed speech available; and 

the higher resource case of a professional user, who can 

be expected to have hours of speech. We also consider 

the out-of-domain case of accented speech, again in a 

low resource situation. 

We aim to provide information as a basis for esti-

mates; to give some intuition into the trade-offs between 

available data and training time, particularly in low-re-

source situations. 

Unsupervised learning 

In recent years, it has become common to initialise neu-

ral networks by pretraining on a general task, which is 

later finetuned on the desired task by freezing the earlier 

layers of the network, and training only the final, classi-

fier layer, which drastically reduces the amount of com-

putation and task-specific data required, while typically 

improving performance. 

In computer vision, it has long been common to pre-

train on a large dataset, such as ImageNet (Vinyals et al., 

2017), though these tasks were initially supervised. 

Transformer-based models in NLP, such as BERT 

(Devlin et al., 2019), achieved great successes by using 

an unsupervised task or tasks (gap filling and next sen-

tence prediction, in the case of BERT), which allows the 

network to learn a generalised representation of the input 

without requiring labelled data, which can then be fine-

tuned for a more specific task. This type of unsupervised 

pretraining was applied to speech recognition in 

Schneider et al., (2019) with the wav2vec model, in 

which the model learned features directly from the audio 

using an unsupervised contrastive task. 

Frameworks for deep learning typically employ 

checkpoints, with the ability to resume from a previous 

checkpoint, for a range of purposes. In the simplest case, 

they allow resumption of training in the event of system 

failure; they are also used as the basis for early stopping, 

where at least two checkpoints are saved: one containing 

the most recent update, the other containing the best. If, 

after a specified number of updates, no improvement has 

been made over the best results, the training process ex-

its, rather than continuing. Continued fine tuning has 

been shown to be useful as a method of domain adapta-

tion (Xu et al., 2021). 

Speaker Adaptive Training 

Older systems based on hidden Markov models (HMM) 

typically included facilities for speaker adaptation, for 

example, using maximum likelihood linear regression 

(MLLR) (Leggetter & Woodland, 1994); consumer 

speech recognition systems typically included such facil-

ities, so the accuracy of the recognition of the user’s 

speech increased as the application was used (e.g., 

Nuance, 2014). 

Experiments 

Data 

For in-domain experiments we made use of the LJSpeech 

dataset, version 1.1 (Ito & Johnson, 2017), which 



contains approximately 24 hours of speech of a single 

speaker with a General American accent, taken from 

LibriVox. For accented speech, we used the AWB (Scot-

tish) voice data from the CMU Arctic collection 

(Kominek & Black, 2004). 

After extracting 5% each of the IDs for test and val-

idation, for each split we greedily took IDs until adding 

the next would exceed the amount of the split; the re-

mainder was then searched for the longest single seg-

ment that can be added. 

 For the casual user case, we took 5-minute incre-

ments, from 5 minutes to 120; for the professional case, 

2-hour increments until 16 hours. For the accented data, 

as the amount of available data was less than 2 hours, we 

took 5-minute increments from 5 minutes to 60. 

Models 

We used the wav2vec 2.0 base models from the fairseq 

repository1; the “No finetuning” model was used as the 

pretrained base, while finetuning was continued from the 

“960 hours” split. 

Hyperparameters were maintained as in the “960 

split” model; the only script parameters that were 

changed pertained to distributed processing, or to 

memory use. All models were finetuned on a single 

NVIDIA GeForce RTX 3090 with 24Gb of RAM. 

For the specific case of a casual user, we aimed at a 

scenario where free GPU access, such as that provided 

by Google Colab2, would be employed. Although the 

documentation claims that up to 12 hours of GPU time 

may be available3, in practice, we have found the limit to 

fall between 3 and 5 hours and aimed at setting early 

stopping so that training would complete within this 

range. We ran training on a set of splits from 5 to 40 

minutes for 6 hours and chose 300 epochs as matching 

the best results from the majority of these.  

Results 

Low resource, in-domain 

The finetuned model, “960 hours”, without continued 

finetuning, achieved a word error rate (WER) of 5.4%. 

Results for the low data use case, from 5 minutes to 120 

minutes, are collected in Table 1 and visualised in Figure 

1. The result for the largest amount of data shows a rela-

tive improvement over the baseline of over 50%. 

 

Figure 1: WER on 5 to 120 minute splits on LJSpeech. 

Although the reduction in WER as the amount of 

data increased is not smooth, it does show a general 

trend, but the sharp drop from 15 minutes to 20 does not 

quite fit. We repeated the finetuning for the lowest 

amounts of data, 5 minutes to 30, using a larger number 

of epochs for early stopping: 1000 epochs. The results 

 
1 https://github.com/pytorch/fairseq/tree/main/exam-

ples/wav2vec 

are compared with their 300-epoch counterparts in Table 

2, and visualised in Figure 2. 

Table 1:  Results of LJSpeech splits, with times in minutes, for 

early stopping set to 300. The baseline model achieved 5.4%. 

Time WER Time WER Time WER 

5 5.34 45 3.20 85 2.67 

10 5.31 50 2.89 90 2.60 

15 5.30 55 2.91 95 2.39 

20 3.35 60 2.85 100 2.54 

25 3.36 65 2.69 105 2.51 

30 3.36 70 2.94 110 2.59 

35 3.22 75 2.59 115 2.71 

40 3.13 80 2.77 120 2.57 

 

Table 2: Results of LJSpeech splits from 5 to 30 minutes, along 

with training times, for early stopping set to 300 and 1000 

epochs. 

Minutes 300 1000 

WER Time WER Time 

5 5.34 10912.7 4.11 42180.1 

10 5.31 10540.1 4.08 32147.6 

15 5.30 8515.5 3.72 28848.0 

20 3.35 16195.9 3.49 27926.7 

25 3.36 14774.0 3.43 26710.9 

30 3.36 14082.0 3.34 25955.9 

 

 

Figure 2: WER on LJSpeech for 5 to 30 minute splits, indicated 

by “Minutes”, with early stopping at 300 and 1000 epochs. 

Training time in seconds is provided in the columns marked 

“Time”. 

 

Higher resource, in-domain 

The higher resource splits showed similar results to the 

low resource setting, with the largest amount of data pro-

ducing WER of 1.03. Results are collected in Table 3 and 

visualised in Figure 3. 

 

Table 3: Results of LJSpeech splits from 2 to 16 hours. 

Time WER Time WER 

2 2.57 10 1.38 

4 1.47 12 1.22 

6 1.66 14 1.13 

8 1.47 16 1.03 

2 https://colab.research.google.com/ 
3 https://research.google.com/colaboratory/faq.html 

https://github.com/pytorch/fairseq/tree/main/examples/wav2vec
https://github.com/pytorch/fairseq/tree/main/examples/wav2vec
https://colab.research.google.com/
https://research.google.com/colaboratory/faq.html


 

 

Figure 3: WER of LJSpeech splits from 2 to 16 hours. 

Low resource, out-of-domain 

The finetuned model, “960 hours”, without continued 

finetuning, achieved a word error rate (WER) of 5.77% 

on the out-of-domain (differently accented) data. The 

results of the out-of-domain data are collected in Table 

4 and visualized in Figure 4. 

 

Table 4: Results of CMU AWB data (Scottish accent) in splits 

of 5 to 60 minutes. 

 

 

 

 

 

 

 

Figure 4: WER on 5 to 60 minute splits on CMU AWB data. 

Discussion 

Our results suggest that continuing finetuning is a viable 

method for single speaker adaptation.  

There is much to recommend continued finetuning 

as an adaptation method: it is effectively an “off-the-

shelf” method, relying on nothing more than extra data 

and the checkpointing facilities built in to deep learning 

frameworks, without requiring any modification to the 

software or specially trained models. 

One drawback of continued finetuning is the possi-

bility of catastrophic forgetting, where the network 

adapts to the new data at the cost of losing the ability to 

process the old. In the particular case of single speaker 

adaptation, this would typically not be considered a prob-

lem, but end users ought to be made aware that the adap-

tation may render the model less usable for other speak-

ers. 

The number of epochs used for early stopping ought 

to be balanced against the amount of training data: in the 

lowest cases of 5 and 10 minutes, we saw little to no im-

provement over the baseline, which was improved in the 

LJSpeech case by raising the number of epochs; in these 

cases, however, a better use of time might be to simply 

record or annotate more data and rerun the adaptation 

with this extra data. 

In low resource settings, if more than one GPU is 

available, it may be worthwhile to remove some data, as 

when neighbouring splits produced the same WER, this 

seemed to indicate that it would be worth continuing 

training for longer, though our results are not extensive 

or robust enough to confirm this with any great certainty. 

One particular weakness in our experiments was the 

use of unrealistically large validation sets, which may 

have skewed the results. In low resource settings like the 

ones we explored here, it would have been more conven-

tional to not use a validation set, to not reduce the amount 

of training data. Although we saw nothing in the training 

loss to indicate a potentially different outcome, it would 

be better to more realistically match the conditions we 

expect in a low resource setting. 

That the WER from the baseline model on the dif-

ferently accented data was not significantly different 

from the in-domain data shows that our results are not 

particularly indicative: we would need to check again 

with data that performs less well with the baseline model 

to be able to draw any conclusions regarding accent. 

Conclusions 

In this paper, we have attempted to establish whether 

continued finetuning of an existing model could be suit-

able as an adaptation method for a single speaker, across 

a range of dataset sizes, ranging from minutes to hours, 

to provide a basis for estimates into the amount of data 

required. We find that amounts as low as 20-30 minutes 

can provide a notable decrease in word error rate with 3-

4 hours of training, while with 16 hours, the word error 

rate can be brought as low as 1.03%. With increased 

training time, even amounts of data as low as 5-10 

minutes can provide a noticeable reduction in WER. 
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